|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin|| |- |bgcolor=#e7dcc3|Cells|||10: 2 3.6.6 4 3.4.4 4 4.4.6 |- |bgcolor=#e7dcc3|Faces||24: 8 + 18 + 8 |- |bgcolor=#e7dcc3|Edges||48 |- |bgcolor=#e7dcc3|Vertices||24 |- |bgcolor=#e7dcc3|Vertex figure||80px Isosceles-triangular pyramid |- |bgcolor=#e7dcc3|Symmetry group||(), order 48 |- |bgcolor=#e7dcc3|Properties||convex |} In geometry, a truncated tetrahedral prism is a convex uniform polychoron (four-dimensional polytope). This polychoron has 10 polyhedral cells: 2 truncated tetrahedra connected by 4 triangular prisms and 4 hexagonal prisms. It has 24 faces: 8 triangular, 18 square, and 8 hexagons. It has 48 edges and 24 vertices. It is one of 18 uniform polyhedral prisms created by using uniform prisms to connect pairs of parallel Platonic solids and Archimedean solids. 240px Net ==Alternative names== # Truncated-tetrahedral dyadic prism (Norman W. Johnson) # Tuttip (Jonathan Bowers: for truncated-tetrahedral prism) # Truncated tetrahedral hyperprism 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「truncated tetrahedral prism」の詳細全文を読む スポンサード リンク
|